MicroRNA-3151 inactivates TP53 in BRAF-mutated human malignancies.

نویسندگان

  • Malori A Lankenau
  • Ravi Patel
  • Sandya Liyanarachchi
  • Sophia E Maharry
  • Kevin W Hoag
  • Megan Duggan
  • Christopher J Walker
  • Joseph Markowitz
  • William E Carson
  • Ann-Kathrin Eisfeld
  • Albert de la Chapelle
چکیده

The B-Raf proto-oncogene serine/threonine kinase (BRAF) gene is the most frequently mutated gene in malignant melanoma (MM) and papillary thyroid cancer (PTC) and is causally involved in malignant cell transformation. Mutated BRAF is associated with an aggressive disease phenotype, thus making it a top candidate for targeted treatment strategies in MM and PTC. We show that BRAF mutations in both MM and PTC drive increased expression of oncomiR-3151, which is coactivated by the SP1/NF-κB complex. Knockdown of microRNA-3151 (miR-3151) with short hairpin RNAs reduces cell proliferation and increases apoptosis of MM and PTC cells. Using a targeted RNA sequencing approach, we mechanistically determined that miR-3151 directly targets TP53 and other members of the TP53 pathway. Reducing miR-3151's abundance increases TP53's mRNA and protein expression and favors its nuclear localization. Consequently, knockdown of miR-3151 also leads to caspase-3-dependent apoptosis. Simultaneous inhibition of aberrantly activated BRAF and knockdown of miR-3151 potentiates the effects of sole BRAF inhibition with the BRAF inhibitor vemurafenib and may provide a novel targeted therapeutic approach in BRAF-mutated MM and PTC patients. In conclusion, we identify miR-3151 as a previously unidentified player in MM and PTC pathogenesis, which is driven by BRAF-dependent and BRAF-independent mechanisms. Characterization of TP53 as a downstream effector of miR-3151 provides evidence for a causal link between BRAF mutations and TP53 inactivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNA Expression Signatures Associated With BRAF-Mutated Versus KRAS-Mutated Colorectal Cancers

BRAF and KRAS genes are known to play a similar role in the activation of RAS-RAF-MEK-ERK signaling pathway in colorectal tumorigenesis. However, BRAF-mutated colorectal cancers (CRCs) have distinct clinicopathologic characteristics different from those of the KRAS mutated ones as in comparison the BRAF-mutated CRCs are associated with a much worse prognosis for the afflicted patients. This stu...

متن کامل

Frequency of Somatic TP53 Mutations in Combination with Known Pathogenic Mutations in Colon Adenocarcinoma, Non–Small Cell Lung Carcinoma, and Gliomas as Identified by Next-Generation Sequencing

The tumor suppressor gene TP53 is the most frequently mutated gene in human cancer. It encodes p53, a DNA-binding transcription factor that regulates multiple genes involved in DNA repair, metabolism, cell cycle arrest, apoptosis, and senescence. TP53 is associated with human cancer by mutations that lead to a loss of wild-type p53 function as well as mutations that confer alternate oncogenic f...

متن کامل

Dysregulation of microRNA biogenesis in cancer: the impact of mutant p53 on Drosha complex activity.

A widespread decrease of mature microRNAs is often observed in human malignancies giving them potential to act as tumor suppressors. Thus, microRNAs may be potential targets for cancer therapy. The global miRNA deregulation is often the result of defects in the miRNA biogenesis pathway, such as genomic mutation or aberrant expression/localization of enzymes and cofactors responsible of miRNA ma...

متن کامل

Consistent absence of BRAF mutations in salivary gland carcinomas

Introduction: Malignant salivary gland tumors are rare entities. Despite advances in surgery, radiation therapy and chemotherapy, the rate of the mortality and five-year survival has not been improved markedly over the last few decades. The activation of EGFR- RAS-RAF signaling pathway contributes to the initiation and progression of many human cancers, promising a key pathway for therapeutic m...

متن کامل

A Rare Finding of a BRAF Mutation in Renal Cell Carcinoma with Response to BRAF-Directed Targeted Therapy.

Whole exome sequencing can identify somatic mutations in malignant tumors and allow for personalized and novel treatment of common malignancies. Mutations in the BRAF gene are rare in renal cell carcinoma, and thus, BRAF inhibitors are not considered standard in the treatment of these cancers. Here, we report a case of a patient with a rare BRAF-mutated metastatic renal cell carcinoma who obtai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 49  شماره 

صفحات  -

تاریخ انتشار 2015